If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2+9s+10=0
a = 1; b = 9; c = +10;
Δ = b2-4ac
Δ = 92-4·1·10
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{41}}{2*1}=\frac{-9-\sqrt{41}}{2} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{41}}{2*1}=\frac{-9+\sqrt{41}}{2} $
| (x-2)^1.5=125 | | 5/4=4x/129 | | x/7-4=9 | | 13(3c-9)=4c-7 | | -28-42x+36=22x-12-10x | | 1/2(4n+8)=12 | | -2+x=30 | | 5x+12=2x=3 | | 1/6d+2/3=1/4(d+-2) | | 6X+5=31;x=4 | | -8/7=-2-11x/4+9x | | 10(z+1)-4(z-4)=3(z-1)+2(z-1) | | 3q-6=6q+12 | | 6x(12-x)=3x-2 | | 43-(x+9)=9x-6 | | -2(b+1)-5=11 | | (x+11/3)=-2 | | x+((1/2)x+3)=180 | | 4-x=50 | | 15x+45=(3x+1)-x+8 | | 34-7n=-1-3(5n+7) | | 5x+6=10x+5-24 | | 2(x+6)^2=40 | | -2/3=-1/3w-1/7 | | 28-5x=15+8x | | (14+x)/(9+x)=9/4 | | 9x^2−42x+50=0 | | 1/4x-(-12)=14 | | 2-5b=4b+29 | | x/7=-6/23 | | n/7+3=42 | | -2(w+3)+7=-7 |